Uncategorized

Scientists Produce Mineral in Lab Which Can Remove CO2 From Atmosphere

Scientists have found a rapid laboratory technique of producing magnesite, a mineral which can store carbon dioxide. If this process can be developed to an industrial scale, it might be instrumental in removing CO2 from the atmosphere for long-term storage, consequently countering the global warming effect of atmospheric CO2. This revolutionary work was presented at the Goldschmidt conference in Boston.

Scientists have been working to slow global warming by removing carbon dioxide from the atmosphere for some time now but their progress was hindered by serious practical and economic limitations. Now, for the first time scientists have been successful. The team of researchers explained how magnesite forms at low temperature, and thus developed a route to dramatically accelerate its crystallization. A ton of naturally occurring magnesite can potentially remove around half a ton of CO2 from the atmosphere, but its natural rate of formation is very slow.

Magnesite sediments in a playa in British Columbia, Canada. Credit: Ian Power

Project leader, Professor Ian Power (Trent University, Ontario, Canada) said, “Our work shows two things. Firstly, we have explained how and how fast magnesite forms naturally. This is a process which takes hundreds to thousands of years in nature at Earth’s surface. The second thing we have done is to demonstrate a pathway which speeds this process up dramatically”.

The researchers were able to demonstrate that by using polystyrene microspheres as a catalyst, magnesite would form within just 72 days. As the microspheres themselves are unchanged by the production process, they can ideally be reused.

He explained, “Using microspheres means that we were able to speed up magnesite formation by orders of magnitude. This process takes place at room temperature, meaning that magnesite production is extremely energy efficient. For now, we recognise that this is an experimental process, and will need to be scaled up before we can be sure that magnesite can be used in carbon sequestration (taking CO2 from the atmosphere and permanently storing it as magnesite). This depends on several variables, including the price of carbon and the refinement of the sequestration technology, but we now know that the science makes it do-able”.

Natural magnesite crystal (4 microns wide). Credit: Ian Power

Professor Peter Kelemen at Columbia University’s Lamont Doherty Earth Observatory (New York) commented, “It is really exciting that this group has worked out the mechanism of natural magnesite crystallization at low temperatures, as has been previously observed—but not explained—in weathering of ultramafic rocks. The potential for accelerating the process is also important, potentially offering a benign and relatively inexpensive route to carbon storage, and perhaps even direct CO2 removal from air.”

Related Articles

Leave a Reply

Back to top button
Close